

Terbit online pada laman web jurnal:

https://ejournal.sttp-yds.ac.id/index.php/js/index

SAINSTEK

ISSN (Print) 2337-6910 | ISSN (Online) 2460-1039

Studi Optimasi Pola Tanam Daerah Irigasi Lubuk Ambacang I Kecamatan Kuantan Mudik Menggunakan Program Linier

Chahyani Putria

^aProgram Pasca Sarjana Teknik Sipil Universitas Riau, Kampus Bina Widya KM 12,5 Simpang Baru, Pekanbaru, Riau, 28293, Indonesia

INFORMASI ARTIKEL

Sejarah Artikel:

Diterima Redaksi: 21 Juni 2024 Revisi Akhir: 29 Desember 2024 Diterbitkan *Online*: 31 Desember 2024

KATA KUNCI

Lubuk Ambacang I

Optimasi

Pola Tanam

Program Linier

KORESPONDENSI

Telepon: +6281346357946

E-mail: chahyaniputri17@gmail.com

ABSTRACT

Penurunan produktivitas tanaman di Daerah Irigasi Lubuk Ambacang I yang menerima air dari Bendungan Kobun Nopi di Kecamatan Kuantan Mudik, karena penyediaan air yang tidak efektif dibandingkan dengan kebutuhan air daerah irigasi serta pola tanam yang belum optimal. Oleh karena itu, perlu dibangun sistem irigasi di Lubuk Ambacang I dan pengaturan pola tanam untuk mencapai produksi tanaman yang optimal melalui penerapan teknik optimasi guna meningkatkan hasil pertanian. Program linier digunakan sebagai strategi optimasi. Dengan menggunakan program linier untuk menyusun pola tanam di daerah irigasi Lubuk Ambacang I, penelitian ini bertujuan untuk memperkirakan luas maksimum dan keuntungan yang diperoleh. Rumusnya, seperti keuntungan maksimum, adalah contoh fungsi tujuan. Luas lahan dan ketersediaan debit merupakan dua contoh kendala yang dapat direpresentasikan secara matematis dengan fungsi kendala. Setiap musim tanam, optimasi memperhitungkan dua variabel penanaman: tanaman primer padi dan tanaman sekunder kacang tanah. Dengan luas lahan 200 hektar untuk lahan padi pada musim tanam pertama dan 200 hektar lagi pada musim tanam kedua dan ketiga maka keuntungan maksimal sebesar Rp. 3.403.197.000,00 dicapai melalui desain linier dengan pola tanam padi-padi-palawija. Dua puluh hektar untuk kacang tanah dan tanaman palawija lainnya pada musim tanam ketiga. Di zona irigasi, lembaga terkait dan petani mungkin dapat memanfaatkan penelitian ini.

1. PENDAHULUAN

Pertanian di Negara Indonesia memiliki peran sentral sehingga masyarakat dan pemerintah bekerja sama mengupayakan untuk meningkatkan produktivitasnya. Akan tetapi, seiring perubahan iklim yang tak menentu, membuat petani sering kesulitan dalam memenuhi kebutuhan air untuk pertanian. Oleh sebab itu iklim tidak bisa jadi patokan dalam dasar memulai jadwal tanam petani dalam produksi pertanian saat ini. Faktor yang sangat membantu dalam keberhasilan petani di bidang pertanian saat ini salah satunya adalah penggunaan irigasi.

Kecamatan Kuantan Mudik memiliki salah satu daerah irigasi yang mengairi persawahan di hamparan Luai, yang termasuk juga Desa Bukit Pedusunan, Luai, Seberang Pantai, dan Pulau Binjai yaitu Daerah Irigasi Lubuk Ambacang I. (Ruspianda & Asmeri Jafra, 2021). Menurut Permen PUPR (2015), Daerah Irigasi Lubuk Ambacang I memiliki luas baku 200 ha dan panjang 5,8 km. Jaringannya berasal dari Bendung Kobun Nopi Bukit Pedusunan menuju Desa Pulau Binjai, dan sumber air berasal dari Sungai Batang Luai yang mengalir ke Bendung Kobun Nopi Bukit Pedusunan.

Produksi komoditas padi yang optimal belum terjadi di Daerah Irigasi Lubuk Ambacang I. Rencana Pembangunan Jangka Menengah Daerah Kabupaten Kuantan Singingi tahun 2016 hingga 2021 mendukung hal tersebut dengan menyatakan bahwa peningkatan output komoditas pertanian tidak tercapai. Salah satunya akibat distribusi air yang kurang memenuhi kebutuhan lahan irigasi dan pengelolaan pola tanam yang tidak efektif. Oleh karena itu, pola tanam di Daerah Irigasi Lubuk Ambacang I harus dioptimalkan agar menghasilkan hasil panen yang lebih banyak dibandingkan sebelumnya dengan menggunakan cara yang benar.

Penelitian ini menggunakan metode program linier atau sering disebut pemodelan, yang merupakan standar emas dalam pengelolaan sumber daya air untuk penyediaan air irigasi dan penetapan jadwal tanam yang optimal. (Difallah et al., 2017).

Ada software seperti POM QM untuk Windows yang dapat mengoptimalkan model sistem sesuai dengan kondisi aslinya. Kemudian, dengan memisahkan elemenelemen utamanya, dapat diubah menjadi model matematika dan digunakan untuk mencapai solusi yang selaras dengan tujuan pengambilan keputusan. (Sunjani, 2021).

2. TINJAUAN PUSTAKA

2.1. Evapotranspirasi

Hilangnya air melalui penguapan dari permukaan tanaman dan tanah. Evapotranspirasi tanaman referensi dihitung menggunakan data klimatologi dan sejumlah rumus empiris. Namun Anda telah menyesuaikan penghitungan ini agar sesuai dengan karakteristik unik area penelitian. Penjelasan menyeluruh tentang referensi evapotranspirasi dapat ditemukan dalam persamaan Modifikasi Penman, salah satu formulasi yang tersedia. Dengan memasukkan data klimatologi, software Cropwate 8.0 dapat memberikan output berupa angka evapotranspirasi sehingga menjadi aplikasi tambahan yang dapat membantu dalam memperoleh nilai-nilai tersebut.

2.2 Curah Hujan Andalan

Curah hujan yang dapat diandalkan ditentukan dengan menggunakan data curah hujan historis yang dikumpulkan dari stasiun meteorologi regional. Rata-rata curah hujan harian, bulanan, atau tahunan dapat dihitung dengan pengolahan dan analisis data. Curah hujan minimal 50% diperlukan untuk tanaman palawija, sedangkan curah hujan 80% cukup untuk tanaman padi. Rumus inilah yang digunakan untuk menentukan peluang terjadinya hujan.

$$\mathbf{R80} = \frac{n}{5} + \mathbf{1} \tag{1}$$

dengan:

 $R80 = curah \ hujan \ yang \ terjadi \ dengan \ tingkat$ keandalam 80% (mm)

n = jumlah tahun pengamatan.

2.3 Curah Hujan Efektif

Penelaahan curah hujan efektif mengikuti penentuan curah hujan pokok pada wilayah tinjauan kajian. Ketika curah hujan jatuh di dalam zona irigasi, air tersebut dapat digunakan untuk menghidrasi tanaman secara langsung. Ini dikenal sebagai curah hujan efektif. Data curah hujan bulanan yang diperoleh dari berbagai lokasi pencatatan hujan dapat digunakan untuk menentukan curah hujan efektif. Tanaman yang berbeda membutuhkan jumlah curah hujan efektif yang berbeda, namun secara umum, curah hujan tersebut harus minimal 70% dari curah hujan bulanan normal. Sebagai komoditas, beras adalah.

Tanaman Padi :
$$Re = 70\% \times R80$$
 (2)

2.4 Efisiensi Irigasi

Menurut (Mukhlas Abror, Manyuk Fauzi, 2014), Adapun rumusan dari kebutuhan air irigasi adalah sebagai berikut:

$$KAI = \frac{(Etc+IR+WLR+P-Re)}{EI} X A$$
 (3)

Keterangan:

 $KAI = Kebutuhan air irigasi, m^3/det$

Etc = Penggunaan konsumtif, mm/hari (Etc bernilai nol, jika pada masa penyiapan lahan dikarenakan tidak ada tanaman)

IR = Kebutuhan air irigasi di tingkat persawahan pada masa penyiapan lahan, mm/hari (sebaliknya IR bernilai nol disaat masa pertumbuhan padi)

WLR = Pergantian lapisan air, mm/hari (pergantian disaat awal masa tanam padi)

P = Perkolasi, mm/hari

Re = Curah hujan efektif, mm/hari

A = Luas lahan irigasi, Ha

EI = Efisiensi irigasi (%)

2.5 Penggunaan Komsumtif

Koefisien tanaman dan potensi evapotranspirasi sama-sama berdampak pada konsumsi konsumtif. Berikut adalah tabel yang menampilkan harga koefisien pabrik:

Tabel 1. Harga Koefisien Tanaman (FAO)

	FA	AO				
Bulan	Varietas	Varietas				
	Biasa	Unggul				
0,5	1,10	1,10				
1	1,10	1,10				
1,5	1,10	1,05				
2	1,10	1,05				
2,5	1,10	1,05				
3	1,05	0,95				
3,5	0,95	0				
4	0	-				

Konsumen konsumtif dan harga referensi evapotranspirasi dihitung setiap enam minggu. Harga ET 0 dihitung setiap setengah bulan dengan analisis frekuensi. Asumsinya di sini adalah mengikuti distribusi normal.

Teknik Penman adalah cara yang secara teoritis lebih disukai untuk menentukan nilai evapotranspirasi. Banyak orang menganggap strategi ini komprehensif. Penggunaan air secara konsumtif dapat ditentukan dengan menggunakan persamaan berikut:

$$\mathbf{E}\mathbf{t}_{\mathbf{c}} = \mathbf{E}\mathbf{t}_{\mathbf{0}} \ \mathbf{x} \ \mathbf{k}_{\mathbf{c}} \tag{4}$$

Et_c = Evapotranspirasi tanaman, mm/hari

Et_o = Evapotranspirasi tanaman rujukan, mm/hari

 K_c = Koefisien tanaman

2.6 Perkolasi

Jenis dan tekstur tanah menentukan nilai perkolasi. Misalnya, laju perkolasi dapat mencapai 1-3 mm/hari pada tanah lempung tebal yang mempunyai sifat genangan air yang tinggi. Tingkat perkolasi yang lebih besar mungkin terjadi pada tanah yang lebih ringan. Investigasi ini menggunakan laju perkolasi 2,00 mm/hari.

2.7 Pergantian Lapisan Air

Setelah pemupukan dan sebelum penanaman padi, lapisan air mengalami transformasi. Disarankan untuk mengganti lapisan air dua kali, masing-masing 50 mm, setelah satu bulan dan dua bulan penanaman atau relokasi tanaman, sesuai dengan Standar Perencanaan Irigasi, Kriteria Perencanaan Jaringan Irigasi Bagian KP - 01 (2013). Mengubah 3,33 mm/hari selama setengah bulan setara dengan strategi ini.

2.8 Kebutuhan Air untuk Penyiapan Lahan

Kriteria perencanaan irigasi KP-01 (2013) menggunakan teknik yang dirancang oleh Van de Goor dan Zijlstra (1968) untuk menentukan kebutuhan irigasi selama persiapan lahan. Pada tahap persiapan lahan, pendekatan ini mengandalkan laju air yang stabil dalam liter/detik, seperti yang ditunjukkan oleh persamaan berikut:

$$IR = \frac{M \cdot e^k}{e^k - 1} \tag{5}$$

Dimana:

IR : Pengukuran dilakukan setiap hari untuk memenuhi kebutuhan air irigasi pada lahan sawah pada saat penyiapan lahan

M : Volume air harian yang dibutuhkan untuk mengisi kembali sawah jenuh air yang hilang akibat evaporasi dan perkolasi:

$$\mathbf{M} = \mathbf{E}_0 + \mathbf{P} \tag{6}$$

E₀ : mm/hari penguapan air terbuka diukur pada 1,1 ETc selama persiapan lahan

P : perkolasi, mm/hari

$$\mathbf{k} = \frac{MT}{S} \tag{7}$$

T: jangka waktu penyiapan lahan (hari)

S : Saturasi membutuhkan 50 mm air atau 3,33 mm setiap hari.

2.9 Efisiensi Irigasi

Ukuran efisiensi irigasi dapat ditemukan dengan membandingkan jumlah air yang digunakan dengan jumlah yang dibuang dari pintu masuk atau fasilitas. Tingkat efisiensi irigasi utama sebesar 90%, tingkat sekunder sebesar 90%, dan tingkat tersier sebesar 80%, menurut Pedoman Direktorat Jenderal Irigasi (2013). Oleh karena itu, 0,648, yaitu sekitar 0,65% dari efisiensi irigasi keseluruhan, diperoleh dengan mengalikan efisiensi pada setiap tingkat, yaitu 0,9 x 0,9 x -.8.

2.10 Kebutuhan Air untuk Bangunan Pengambilan

Kebutuhan air pada bangunan intake dapat ditentukan dengan menggunakan persamaan berikut.

$$DR = \frac{NFR}{Ef.Primer \, x \, Ef \, Sekunder \, x \, Ef.Tersier} = \frac{NFR}{65 \, \%} \qquad (8)$$

keterangan:

DR: Meter per detik kebutuhan air di fasilitas intake atau gerbang

Efisiensi saluran pada tingkat primer, sekunder, dan tersier dilambangkan dengan Ef.

2.11 Optimasi Menggunakan Program Linier

Salah satu model optimasi adalah pemrograman linier, yang melibatkan pembangunan model sistem yang berfungsi dalam praktik, kemudian menerjemahkannya ke dalam model matematika dengan mengisolasi komponen-komponen utamanya untuk menemukan solusi yang memenuhi tujuan pengambilan keputusan (Montarcih, 2008). Karya ini menggunakan pendekatan optimasi pemrograman linier sebagai model matematika untuk analisis masalah.

3. METODOLOGI

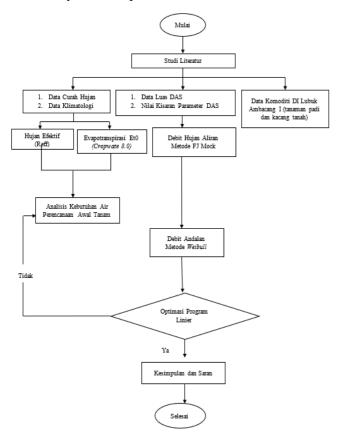
3.1 Lokasi Penelitian

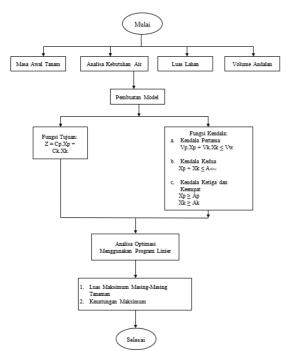
Lokasi penelitian terletak di Kecamatan Kuantan Mudik, salah satu kecamatan di Kabupaten Kuantan Singingi, dengan koordinat S 00 37' 49.07" dan Lintang E 101 28' 12.28". Dengan ketinggian sekitar 36 meter di atas permukaan laut, kondisi wilayah Kabupaten Kuantan

Mudik bervariasi antara datar dan bergunung-gunung. Jenis tanah Kabupaten Kuantan Mudik mempunyai ciri lapisan atas berwarna hitam gembur dan lapisan bawah berwarna kuning. Desa Bukit Pedusunan, Seberang Pantai, Luai, dan Pulau Binjai merupakan empat komunitas yang membentuk Daerah Irigasi Lubuk Ambacang I. Potensi luas Daerah Irigasi Lubuk Ambacang I adalah 200 hektar, menurut Dinas Pekerjaan Umum Kabupaten Kuantan Singingi. Daerah irigasi Kabupaten Kuantan Singingi ditunjukkan pada peta geospasial di bawah ini.

Sumber: Dinas PUPR Kabupaten Kuantan Singingi

Gambar 1.Peta Geospasial Daerah Irigasi Kabupaten Kuantan Singingi


Dibawah ini merupakan sumber air untuk memenuhi kebutuhan air di Daerah Irigasi Lubuk Ambacang I yaitu dari Sungai Batang Luai lalu masuk ke Bendung Kobun Nopi baru dialirkan ke jaringan irigasi (gambar 2).


Gambar 2. Bendung Tetap Kobun Nopi

3.2 Diagram Alir Penelitian

Diagram alir penelitian pada Gambar 3a dan 3b menunjukkan langkah-langkah yang akan dilakukan untuk menyelesaikan penelitian.

Gambar 3a. Diagram Alir Penelitian

Gambar 3b. Diagram Alir Pemodelan dengan Program Linier

4. HASIL DAN PEMBAHASAN

4.1. Uji Konsistensi Data

Untuk mengurangi kesalahan data, perlu dilakukan uji konsistensi data hujan untuk memastikan data yang dikumpulkan di lapangan akurat dan memenuhi kriteria tertentu. Pendekatan RAPS (Rescaled Adjust Partial Sums) digunakan untuk menilai konsistensi data penelitian. Data curah hujan tahunan yang dikumpulkan dari Stasiun Sentajo untuk periode 2013–2022 digunakan.

Tabel 1. Uji Konsistensi Data dengan Metode RAPS

Tahun	Yi	Yi-Yrata	Sk*	Dy ²	Sk**	Sk**
2013	1.659,20	-613,77	0,00	0,00	0,00	0,00
2014	1.458,30	-814,67	0,00	0,00	0,00	0,00
2015	1.669,60	-603,37	0,00	0,00	0,00	0,00
2016	2.227,00	-45,97	0,00	0,00	0,00	0,00
2017	2.471,10	198,13	198,13	3.925,67	0,70	0,70
2018	2.689,20	416,23	416,23	17.324,99	1,47	1,47
2019	2.485,40	212,43	212,43	4.512,78	0,75	0,75
2020	2.783,70	510,73	510,73	26.084,82	1,80	1,80
2021	2.727,87	454,90	454,90	20.693,67	1,60	1,60
2022	2.558,30	285,33	285,33	8.141,49	1,00	1,00
Jumlah	22.729,67		2.077,77	80.683,42	7,31	7,31
Yrata-rata	2.272,97					
Banyak Data	10					

Sumber: Hasil Perhitungan

Pada uji konsistensi menggunakan metode Raps diperoleh sebagai berikut:

$$Q_{hitung} < Q_{kritik} = 0.57 < 1.29$$

$$R_{hitung} < R_{kritik} = 0.57 < 1.38$$

Dapat dsimpulkan bahwa data hujan teruji "data konsisten".

Tabel 2. Rekapitulasi hasil uji konsistensi data

α	Q/n ^{0,5}	R/n ^{0,5}	Ket
1%	1,29	1,38	data konsisten
5%	1,14	1,28	data konsisten

Sumber: Hasil perhitungan

4.2. Analisis Evapotranspirasi

Adapun hasil dari analisis evapotranspirasi dengan program bantu $Cropwate\ 8.0$ dengan periode kurun waktu berbeda dilihat pada tabel berikut :

Tabel 4. Nilai Evapotranspirasi Harian, Bulanan, setengah bulanan

Bulan	Evapotranspirasi Potensial Harian ETo	Evapotranspirasi Potensial Bulanan	Evapotranspirasi Potensial Setengah Bulanan ET ₀ /2
	mm/hari	mm/bulan	mm/0.5bulan
Januari	2,61	78,3	39,15
Februari	2,81	84,3	42,15
Maret	3,27	98,1	49,05
April	3,08	92,4	46,2
Mei	3,84	115,2	57,6
Juni	3,48	104,4	52,2
Juli	3,26	97,8	48,9
Agustus	3,15	94,5	47,25
September	3,31	99,3	49,65
Oktober	3,02	90,6	45,3
Nopember	2,87	86,1	43,05
Desember	2,41	72,3	36,15

Sumber: Hasil perhitungan dengan cropwate 8.0

4.3 Analisis Curah Andalan

Pendekatan analisis frekuensi digunakan untuk menentukan jumlah curah hujan yang dapat diandalkan untuk tanaman padi (80%) dan tanaman palawija (50%) dengan menggunakan metode ini.

Tabel 5: Perhitungan Curah Hujan Andalan bulan Februari I

	Data I	Hujan	Rangl	cing Data	
No	Tahun	Curah Hujan	Tahun	Curah Hujan	Ket
		rata-rata		rata-rata	
1	2013	126,8	2017	46,2	
2	2014	60,5	2018	46,8	
3	2015	79,7	2014	60,5	60,5
4	2016	115,8	2021	72,4	
5	2017	46,2	2015	79,7	
6	2018	46,8	2022	114,7	114,7
7	2019	127,9	2016	115,8	
8	2020	142,7	2013	126,8	
9	2021	72,4	2019	127,9	
10	2022	114,7	2020	142,7	

Sumber: Hasil Perhitungan

4.4 Analisis Curah Hujan Efektif

Curah hujan efektif sehari dihitung dengan menjumlahkan seluruh curah hujan yang turun selama jangka waktu tertentu, dengan persentase curah hujan melebihi 80% tergantung pada jenis tanaman. Untuk tanaman palawija Re= R50, sedangkan untuk tanaman padi 0,7 kali R80. Tabel 6 di bawah ini menampilkan hasil perhitungan curah hujan efektif.

Tabel 6. Perhitungan Curah Hujan Efektif

				R80	R50		Curah Huja	an Efektif (l	Re)
No	Bulan	Periode	Jumlah Hari	Padi	Palawija	Padi	Palawija	Padi	Palawija
				mm	mm	mm	mm	mm/hari	mm/hari
	Januari	I	15	18,5	106,1	12,95	106,1	0,86	7,07
1	Januari	II	16	52	116,9	36,4	116,9	2,28	7,31
_	Februari	I	14	60,5	114,7	42,35	114,7	3,03	8,19
2	reoruari	п	14	30,6	73,5	21,42	73,5	1,53	5,25
	Maret	I	15	44,1	101,1	30,87	101,1	2,06	6,74
3	Maret	п	16	70,9	119,1	49,63	119,1	3,1	7,44
	A 21	I	15	50,6	79,9	35,42	79,9	2,36	5,33
4	April	п	15	125,4	175,5	87,78	175,5	5,85	11,7
_	Mei	I	15	55,1	98,8	38,57	98,8	2,57	6,59
5	Mei	п	16	65,4	107,9	45,78	107,9	2,86	6,74
6	Juni	I	15	20,5	43	14,35	43	0,96	2,87
ь	Juni	п	15	43,5	64,9	30,45	64,9	2,03	4,33
7	Juli	I	15	10,1	51,3	7,07	51,3	0,47	3,42
′	Juli	п	16	9,5	66,3	6,65	66,3	0,42	4,14
8		I	15	12,9	57,8	9,03	57,8	0,6	3,85
8	Agustus	II	16	49,2	86,9	34,44	86,9	2,15	5,43
		I	15	18,2	53,8	12,74	53,8	0,85	3,59
9	September	п	15	44,9	118,2	31,43	118,2	2,1	7,88
		I	15	59,2	79,2	41,44	79,2	2,76	5,28
10	Oktober	п	16	56,2	96,4	39,34	96,4	2,46	6,03
		I	15	83,3	133,5	58,31	133,5	3,89	8,9
11	Nopember	п	15	71	132,8	49,7	132,8	3,31	8,85
		I	15	39	65,5	27,3	65,5	1,82	4,37
12	Desember	п	16	22,4	99,3	15,68	99,3	0,98	6,21

Sumber: Hasil Perhitungan

4.5 Analisis Debit Aliran dengan Metode FJ. Mock

Curah hujan efektif sehari dihitung dengan menjumlahkan seluruh curah hujan yang turun selama jangka waktu tertentu, dengan persentase curah hujan melebihi 80% tergantung pada jenis tanaman. Untuk tanaman palawija Re= R50, sedangkan untuk tanaman padi 0,7 kali R80. Tabel 6 di bawah ini menampilkan hasil perhitungan curah hujan efektif.

Gambar 2. Hasil Simulasi Hitungan Debit Rerata Tengah Bulanan Tahun 2022

Sumber: Hasil Perhitungan

Berdasarkan data hujan dan berbagai parameter DAS, serta koefisien tanaman yang diperoleh dari pola tanam, yang berdampak pada kuantitas proses pengubahan hujan menjadi aliran, grafik di atas menunjukkan perkiraan nilai limpasan setengah bulanan (rata-rata debit aliran). Dua minggu terakhir bulan Januari, misalnya, debit airnya sebesar 0,35 m3/detik. Namun debit sebesar 0,80 m3/detik

tercatat selama dua minggu pertama bulan Februari. Hal yang sama berlaku untuk bulan-bulan berikutnya.

4.6 Analisis Debit Andalan dengan Metode Weibull

Dengan menggunakan pendekatan Weibull, penghitungan debit primer memberikan hasil sebagai berikut:

Tabel 5. Perhitungan debit andalan dengan probabilitas weibull

Bulan	Periode ke-	Jumlah Hari	Q80 (m ³ /det)	Volume Andalan (m³)							
Januari	I	15	0,287	372.279							
Januari	п	16	0,267	369.093							
Februari	I	14	0,282	341.539							
rebruari	II	14	0,323	390.711							
3.6	I	15	0,278	359.698							
Maret	п	16	0,258	356.619							
A:1	I	15	0,273	353.567							
April	II	15	0,422	547.386							
Mei	I	15	0,303	392.743							
Mei	II	16	0,275	380.755							
Juni	I	15	0,298	386.049							
Juni	п	15	0,308	398.592							
Juli	I	15	0,273	353.651							
Jun	II	16	0,254	350.624							
	I	15	0,268	347.623							
Agustus	п	16	0,249	344.648							
Gtt	I	15	0,295	382.349							
September	II	15	0,266	344.232							
Oktober	I	15	0,263	341.286							
Oktober	II	16	0,245	338.365							
N	I	15	0,285	369.427							
Nopember	п	15	0,623	807.407							
Desember	I	15	0,280	363.131							
Desember	п	16	0,283	390.753							
Volur	Volume Andalan = Q80 x 60 x 60 x 24 x jumlah hari										

Sumber: Hasil Perhitungan

4.7 Analisis Kebutuhan Air Irigasi Rencana

a. Pola Tanam (Padi-Padi-Palawija)

Bulan November, awal musim tanam, bertepatan dengan bulan paling hujan dalam hal antisipasi kebutuhan air irigasi. Perhitungan kebutuhan air irigasi yang direncanakan dimulai dari waktu persiapan tanah, dilanjutkan dengan waktu perkembangan tanaman, dan terakhir menentukan berapa banyak air yang dibutuhkan setiap tanaman berdasarkan pola tanam.

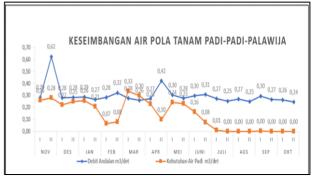
Tabel 6a. Perhitungan kebutuhan air tanaman pada pola tanam padi-padi-palawija

KETEKANGAN						MUSIM 1A	NAMI					MUSIM I.	ANAM II	
Bulan		Satuan	Nove	mber	Des	ember	Jan	uani	Feb	uani	M	iret	A	pril
Periode 15 Harian Ke-		SHUM	I	II	I	I	I	II	I	II	I	I	I	II
Pola Tanam			Penyiapi	en Lahan			PAD)[Penyiap	an Lahan	P.	ADI
Evapotranspirasi	Et0		2,87	2,87	2,41	2,41	2,61	2,61	2,81	2,81	3,27	3,27	3,08	3,08
Koefisien Tanaman	Ke													
a. Kcl			LP	LP	1,10	1,10	1,05	1,05	1,05	0,95	LP	LP	1,10	1,10
b. Kc2			LP	1,10	1,10	1,05	1,05	1,05	0,95	0,00	LP	1,10	1,10	1,05
c. Kc			LP	LP	1,10	1,10	1,05	1,05	1,05	0,95	LP	LP	1,10	1,10
Rata-Rata Koefisien Tanaman					1,10	1,08	1,05	1,05	1,02	0,63		1,10	1,10	1,08
Evapotranspirasi tanaman	Etc	mm hari	-	-	2,65	2,61	2,74	2,74	2,86	1,78	-	-	3,39	3,34
Curah Hujan Efektif	Re	mm hari	3,89	3,31	1,82	0,98	0,86	2,28	3,03	1,53	2,06	3,10	2,36	5,85
Perkolasi	P	mm hari	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Penggantian Lapisan Air			0,00	0,00	3,33	3,33	3,33	3,33	0,00	0,00	0,00	0,00	3,33	3,33
Kebutuhan Air untuk Penyiapan Lahan	IR	mm hari	11,18	11,18		-				-	11,44	11,44		
NFR = ETc - Re + P + W (Pertombuhan)		mm hari	-	-	6,16	6,96	7,21	5,80	1,83	2,25	-	-	6,36	2,81
Kebutuhan Air Bersih di Sawah (IR-RE)	NFR	mm hari	7,29	7,86	-	-		-	-	-	9,38	8,34	-	
Kebutuhan Air Bersih di Sawah	NFR	mm/hari	7,29	7,86	6,16	6,96	7,21	5,80	1,83	2,25	9,38	8,34	6,36	2,81
NFRliter		ltr/det/ha	0,85	0,91	0,71	0,81	0,84	0,67	0,21	0,26	1,09	0,97	0,74	0,33
NFR		m³/ba	1095,76	1182,06	926,22	1046,46	1083,50	871,27	275,39	338,21	1410,87	1253,94	955,64	423,1
DR		ltr/det/ha	1,30	1,40	1,10	1,24	1,29	1,03	0,33	0,40	1,67	1,49	1,13	0,50
Luas Tanaman Padi dan Palawija		Ha	200,00	200,00	200,00	200,00	200,00	200,00	200,00	200,00	200,00	200,00	200,00	200,0
Kebutuhan Air Padi dan Palawija		m³/det	0,26	0,28	0,22	0,25	0,26	0,21	0,07	0,08	0,33	0,30	0,23	0,10

Sumber: Hasil Perhitungan

Tabel 6b. Perhitungan kebutuhan air tanaman pada pola tanam padi-padi-palawija (Lanjutan)

KETERANGAN				MUSEM T	ANAM II		MUSIM TANAM III									
Bulan		Satuan	M		Ji	355	Juli		Ag	estes	Septe		010	tober		
Periode 15 Harian Ke-		Sausan	I	I	I	II	I	I	I	I	I	I	I	I		
Pola Tanam				PA	DI		Penyiapan Lahan		F	ALAWU	G TANAI	H)				
Evapotranspirasi	Es0		3,84	3,84	3,48	3,48	3,26	3,26	3,15	3,15	3,31	3,31	3,02	3,02		
Koefisien Tanaman	Kε															
a. Kel			1,05	1,05	1,05	0,95	LP	0,50	0,51	0,66	0,85	0,95	0,95	0,95		
b. Kc2			1,05	1,05	0,95	0,00	LP	0,50	0,51	0,66	0,85	0,95	0,95	0,95		
c.Kc			1,05	1,05	1,05	0,95	LP	0,50	0,51	0,66	0,85	0,95	0,95	0,95		
Rata-Rata Koefisien Tanaman			1,05	1,05	1,02	0,63	1.P	0,50	0,51	0,66	0,85	0,95	0,95	0,95		
Evapotranspirasi tanaman	Etc	mm/bari	4,03	4,03	3,54	2,20	-	1,63	1,61	2,08	2,81	3,14	2,87	2,87		
Curah Hujan Efektif	Re	mm/bani	2,57	2,86	0,96	2,03	3,42	4,14	3,85	5,43	3,59	7,88	5,28	6,03		
Perkolasi	P	mm/bani	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00		
Penggantian Lapisan Air			3,33	3,33	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
Kebutuhan Air untuk Penyiapan Lahan	R	mm/bari					6,18		-			-		-		
NFR = ETc - Re + P + W_(Pertumbuhan)		mm/bari	6,79	6,50	4,58	2,17	-	0,00	0,00	0,00	1,23	0,00	0,00	0,00		
Kebutuhan Air Bersih di Sawah (IR-RE)	NFR	mm/bari		-			2,76		-	-		-	-	-		
Kebutuhan Air Bersih di Sawah	NFR	mm/bari	6,79	6,50	4,58	2,17	2,76	0,00	0,00	0,00	1,23	0,00	0,00	0,00		
NFRliter		ltridet ha	0,79	0,75	0,53	0,25	0,32	0,00	0,00	0,00	0,14	0,00	0,00	0,00		
NFR		m³fia	1020,88	977,30	688,74	326,83	414,93	0,00	0,00	0,00	184,44	0,00	0,00	0,00		
DR		ltridet ha	1,21	1,16	0,82	0,39	0,49	0,00	0,00	0,00	0,22	0,00	0,00	0,00		
Luas Tanaman Padi dan Palawija		На	200,00	200,00	200,00	200,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00		
Kebutuhan Air Padi dan Palawija		m³ldet	0,24	0,23	0,16	0,08	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00		


Sumber: Hasil Perhitungan

Untuk setiap musim tanam, Tabel 6a dan 6b menampilkan tahapan pola tanam terkini dengan tata ruang padi-padi-palawija. Dimulai dengan waktu yang dihabiskan untuk mempersiapkan tanah, penelitian berlanjut untuk menentukan berapa banyak air yang dibutuhkan setiap tanaman dalam pengaturan penanaman tersebut. Tabel 7 di bawah ini juga menunjukkan hasil perbandingan kebutuhan air dan ketersediaan air di Lubuk Ambacang I DI Lubuk Ambacang I ditinjau dari kondisi tanaman palawija kacang tanah.

Tabel 7. Keseimbangan Air (padi-padi-palawija)

Keteranga	n			М	JSIM T	ANAN	1 I			M	USIM TA	ANAM	II
Bulan		No	v	D	es	Ja	ın	F	b	M	ar	A	pr
Periode 15 Harian Ke-	Satuan	I	п	I	п	I	II	I	II	I	II	I	П
Debit Andalan	m³/det	0,29	0,62	0,28	0,28	0,29	0,27	0,28	0,32	0,28	0,26	0,27	0,42
Kebutuhan Air Padi	m³/det	0,26	0,28	0,22	0,25	0,26	0,21	0,07	0,08	0,33	0,30	0,23	0,10
Keseimbangan Air	m³/det	0,02	0,34	0,06	0,03	0,03	0,06	0,22	0,24	-0,06	-0,04	0,05	0,3
All													
All													
Keteranga	n	М	USIM T	ANAN	(II			N	IUSIM	TANAN	1 III		
			USIM T	T	III uni	Ji	uli		IUSIM gs		1 III ep	0	kt
Keteranga	Satuan			T		Ji I	uli II					C	kt
Keteranga Bulan Periode 15 Harian			lei .	T	uni	Ji I 0,27	T	A	gs	S	ер	I 0,26	_
Keteranga Bulan Periode 15 Harian Ke-	Satuan	I	fei II	I	uni II	I	п	A I	gs II	I	ер	I	11

Sumber: Hasil Perhitungan

Sumber: Hasil Perhitungan

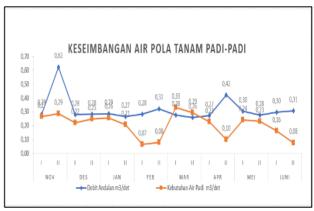
Gambar 3. Keseimbangan Air Tanam Padi-Padi-Palawija

Temuan grafik 3 menunjukkan terdapat lahan prospektif seluas 200 hektar yang dapat ditanami dengan pola padi-padi-palawija. Penanaman akan dimulai pada bulan November, pada musim hujan, dan berlanjut selama tiga musim tanam, dan pada beberapa bulan terjadi kekurangan air. Terjadi kelangkaan air pada musim tanam kedua yaitu pada bulan Maret pada periode I dan II yang digunakan untuk menyiapkan tanah bagi tanaman. Ketersediaan air bulan Maret untuk periode I dan II masing-masing sebesar 0,28 m3/detik dan 0,26 m3/detik, tidak mencukupi kebutuhan air tanaman padi sebesar 0,33 m3/detik dan 0,30 m3/detik.

b. Pola Tanam Padi- Padi

Pada pola tanam padi-palawija-padi juga sama diawali dari Bulan November yang termasuk musim penghujan. Langkah awal perhitungan dimulai dengan masa penyiapan lahan dan diakhiri dengan analisis kebutuhan air tanaman. Berikut rekapitulasi pola tanam padi-palawija-padi dibawah ini:

Tabel 8. Perhitungan kebutuhan air tanaman pada pola tanam padi-padi


KETERANGAN						MUSIMT	ANAMI							MUSIM.	TANAMII			
Bulan		Satura	No	vember	Desc	nber	Jan	vari	Fe	bruari	h	Aaret	A	pril	h	lei .	J	uri
Periode 15 Harian Ke-		satuan	_	- 1	1	I	Ι	-	-	ı	1	I	_	- 11	- 1	- 1	- 1	ı
Pola Tanam			Pengia	pan Lahan			P	ADI			Pengia	pan Lahan			P/	NDI		
Evapotranspirasi	Et0		2,87	2,87	2,41	2,41	2,61	2,61	2,81	2,81	3,27	3,27	3,08	3,08	3,84	3,84	3,48	3,48
Koefisien Tanaman	Kc																	
a. Ket			LP	LP	1,10	1,10	1,05	1,05	1,05	0,95	LP	LP	1,10	1,10	1,05	1,05	1,05	0,95
b. Kc2			LP.	1,10	1,10	1,05	1,05	1,05	0,85	0,00	LP	1,10	1,10	1,05	1,05	1,05	0,35	0,00
c.Ke			P	LP	1,10	1,10	1,05	1,05	1,05	0,35	LP	LP	1,10	1,10	1,05	1,05	1,05	0,35
Rata-Rata Koefisien Tanaman					1,10	1,08	1,05	1,05	1,02	0,63		1,10	1,10	1,08	1,05	1,05	1,02	0,63
Evapotranspirasi tanaman	Etc	nn/hei			2,65	2,61	2,74	2,74	2,86	1,78			3,39	3,34	4,03	4,03	3,54	2,20
Curah Hujan Efektif	Re	nm/hari	3,89	3,31	1,82	0,98	0,86	2,28	3,03	1,53	2,06	3,10	2,36	5,85	2,57	2,86	0,36	2,03
Perkolasi	Р	nn/hari	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
Penggantian Lapisan Air			0,00	0,00	3,33	3,33	3,33	3,33	0,00	0,00	0,00	0,00	3,33	3,33	3,33	3,33	0,00	0,00
Kebutuhan Air untuk Penyiapan Lahan	IR	nn/hari	11,18	11,18							11,44	11,44						
NFR = ETc - Re • P • W (Pertumbuhan)		nn/lisri			6,16	6,96	7,21	5,80	1,83	2,25			6,36	2,81	6,79	6,50	4,58	2,17
Kebutuhan Air Bersih di Sawah (IR-RE)	NFR	nn/hari	7,29	7,86							9,38	8,34						
Kebutuhan Air Bersih di Sawah	NFR	nn/heri	7,29	7,86	6,16	6,36	7,21	5,80	1,83	2,25	9,38	8,34	6,36	2,81	6,79	6,50	4,58	2,17
NFRliter		ltridetiha	0,85	0,91	0,71	0,81	0,84	0,67	0,21	0,26	1,09	0,97	0,74	0,33	0,79	0,75	0,53	0,25
NFR		n ³ /ha	1035,76	1182,06	326,22	1046,46	1083,50	871,27	275,39	338,21	1410,87	1253,94	355,64	423,15	1020,88	377,30	688,74	326,83
DR		ltridetiha	1,30	1,40	1,10	1,24	1,29	1,03	0,33	0,40	1,67	1,43	1,13	0,50	1,21	1,16	0,82	0,39
Luas Tanaman Padi dan Palawija		На	200,00	200,00	200,00	200,00	200,00	200,00	200,00	200,00	180,00	200,00	200,00	200,00	200,00	200,00	200,00	200,00
Kebutuhan Air Padi dan Palawija		m³/det	0,26	0,28	0,22	0,25	0,26	0,21	0,07	0,08	0,30	0,30	0,23	0,10	0,24	0,23	0,16	0,08

Sumber: Hasil Perhitungan

Tabel 9. Keseimbangan Air

Keterangan	l			MU	SIM T	ANA	MI			MUSIM TANAM II								
Bulan		No	OV	D	es	Ja	an	F	eb	M	ar	A	pr	M	ſei	Ju	ni	
Periode 15 Harian Ke-	Satuan	Ι	II	I	II	I	II	I	II	I	II	Ι	II	I	II	I	II	
Debit Andalan	m³/det	0,29	0,62	0,28	0,28	0,29	0,27	0,28	0,32	0,28	0,26	0,27	0,42	0,30	0,28	0,30	0,31	
Kebutuhan Air Padi	m³/det	0,27	0,29	0,22	0,25	0,26	0,21	0,07	0,08	0,33	0,29	0,23	0,10	0,24	0,23	0,16	0,08	
Keseimbangan Air	m³/det	0,02	0,34	0,06	0,03	0,03	0,06	0,22	0,24	-0,05	-0,04	0,05	0,32	0,06	0,04	0,13	0,23	

Sumber: Hasil Perhitungan

Sumber: Hasil Perhitungan

Gambar 4. Keseimbangan Air Tanam Padi-Padi

Pada alternatif kedua, pola tanam padi-padi dengan dua kali masa tanam. Awal tanam juga dimulai dari Bulan November tetapi sama dengan pola tanam sebelumnya pola tanam padi-padi mengalami defisit air dimusim tanam II. otomatis keadaan tersebut menandakan bahwa kebutuhan air tanaman padi di lahan irigasi lebih besar daripada ketersediaan air di lahan tersebut.

4.8 Pemodelan Optimasi dengan Program Linier

Pemodelan optimasi digunakan untuk mengatasi kesulitan yang terkait dengan pengembangan daerah dalam studi kasus dengan tujuan mengoptimalkan hasil produksi, khususnya untuk DI Lubuk Ambacang I. Kebiasaan masyarakat yang menunjukkan bahwa biasanya hanya menanam sekali setiap tahun, sementara seharusnya dapat digunakan dengan lebih baik lagi. Teknik pengembangannya dapat ditentukan dengan menghitung luas lahan untuk setiap jenis tanaman sesuai dengan ketersediaan air irigasi di Bendungan Kobun Nopi. Dengan menggunakan analisis optimasi pada pembagian area, kita mendapatkan hasil produksi yang terbaik. Pemrograman linier digunakan untuk optimasi.

Optimasi adalah metode untuk menghasilkan nilai fungsi yang, dengan batasan tertentu, menyebabkan banyak variabel mencapai nilai maksimum atau minimumnya.

Mengingat keadaan lapangan yang sebenarnya, halhal berikut ini diperlukan:

1. Lubuk Ambacang I mempunyai luas lahan total 200

hektar.

 Tabel 10 menampilkan hasil pertanian DI Lubuk Ambacang I.

Tabel 10. Pendapatan Bersih Usaha Tani

No	Jenis Komoditi	Pendapatan Bersih Produksi /Ha
1	Padi	Rp 8.456.950,00
2	Kacang Tanah	Rp 1.020.840,00

Sumber: (Heldo Noviandi, 2023) dan hasil perhitungan

 Untuk ketersediaan air digunakan dengan menjumlahkan volume andalan per musim tanam yaitu sebagai berikut:

Tabel 11. Volume Andalan per Musim Tanam

,	Bulan	Periode ke-	Q80 (m³/det)	Volume Andalan (m³)	Volume Andalan (m³)
			0,285	369427	(111)
	Nopember	i	0.623	807407	
1	1 028 3	363131			
l	Desember	I	0,283	390753	3404340
MTI		- 1	0,287	372279	
	Januari	II	0,267	369093	
	F		0,282	341539	
	Februari	I	0,323	390711	
	Maret	_	0,278	359698	
	Maret	I	0,258	356619	
	April		0,273	353567	3175409
MTII		I	0,422	547386	
MIII	Mei	_	0,303	392743	
	Mei	I	0,275	380755	
Г	Juni		0,298	386049	
	Juni	I 0,298 38604 II 0,308 39859	398592		
	Juli	_	0,273	353.651	
	Juli	I	0,254	350.624	
	Agustus		0,268	347.623	2802778
MTIII	mgustus	=	0,249	344.648	
''''	September	_	0,295	382.349	
	September	I	0,266	344.232	
	Oktober	_	0,263	341.286	
	Oktober	I	0,245	338.365	

Sumber: Hasil Perhitungan

Tabel 12. Kebutuhan Air Setiap Musim

AWAL MUSIM TANAM	MUSIM TANAM	KOMODITI		
		PADI (m3/Ha)	KACANG TANAH (m3/Ha)	
NOVEMBER I	MT I	6818,869		
	MT II	7057,335	535,071	
	MT III	8297,956	599,360	

Adapun model matematis untuk analisa optimasi penelitian ini terdiri dari

1. Fungsi Tujuan

Menggabungkan lahan pertanian padi dengan lahan kacang tanah merupakan strategi yang optimal. Apa yang terjadi pada persamaan (9) menghasilkan persamaan berikut, yang merupakan fungsi dari dua variabel: Xp dan tujuan memaksimalkan laba bersih (Z). Untuk setiap

musim pertumbuhan, tiga persamaan digunakan untuk mengoptimalkan.

 $\label{eq:maksimalkan} Maksimalkan \ MT \ : Z = C_{p1}.X_{p1} + C_{p2}.X_{p2} \ + C_k.X_k$ Keterangan :

 C_{p1} = Pendapatan bersih padi musim tanam I per Ha

 C_{p2} = Pendapatan bersih padi musim tanam II per Ha

 $C_k \equiv$ Pendapatan bersih palawija musim tanam III per Ha

 X_{p1} = Luasan areal tanam padi musim tanam I (Ha)

 X_{p2} = Luasan areal tanam padi musim tanam II (Ha)

$$\begin{split} X_k &= \text{Luasan areal tanam palawija musim tanam III (Ha)} \\ \text{Nilai pendapatan bersih masing-masing tanaman,} \\ \text{berdasaran data yang dikumpulkan dari BPP Kecamatan} \\ \text{Kuantan Mudik, adalah untuk padi sebesar Rp} \end{split}$$

8.456.950,00/Ha, dan palawija (kacang tanah) sebesar Rp 1.020.840/Ha.

 $C_p = Rp \ 8.456.950/Ha;$ $C_k = Rp \ 1.020.840/Ha.$ Sehingga persamaan (9) dapat dirubah menjadi persamaan (10)

Maksimalkan : $Z = 8.456.950X_{p1} + 8.456.950X_{p2} + 1.020.840X_{\nu}$ (10)

2. Fungsi Kendala

Dalam melakukan analisis optimasi, ada beberapa batasan yang harus diperhatikan. Studi ini dilakukan dengan mempertimbangkan kendala-kendala berikut untuk menemukan jalan tengah antara keadaan saat ini dan metodologi yang dipilih:

- Pendekatan perhitungan optimasi berdasarkan pada setiap musim.
 - Dalam analisis ini dilakukan pada setiap musim untuk padi, dan kacang tanah.
- 2) Volume andalan Sungai Batang Luai adalah MT I $= 3.404.340~\text{m}^3~(=V_{W1})~\text{dan MT II} = 3.175.409$ $\text{m}^3(=V_{W2})~\text{dan dan MT III} = 2.802.778~\text{m}^3(=V_{W3})$
- 3) DI Lubuk Ambacang I mempunyai luas areal 200 Ha sebagai luas potensial daerah irigasi Lubuk Ambacang I. Luas 200 Ha dianggap sebagai luas total dari komoditi tanaman padi dan kacang tanah.
- 4) Berdasarkan pertimbangan faktor-faktor sosial ekonomi maka luas masing-masing tanaman

Terdapat empat rumusan kendala, yaitu: Pertama, adanya batasan volume bahan pokok Bendung Kobun Nopi; kedua, adanya pembatasan luas lahan sawah yang dapat diakses; dan ketiga, keempat, adanya pembatasan luas tanam minimal untuk dua jenis tanaman, kacang tanah dan padi.

a. Kendala pertama

Batasan volume andalan Bendung Kobun Nopi Sungai Batang Luai yang diharapkan selama musim tanam dapat ditunjukkan dalam rumus persamaan (11) sebagai berikut:

$$V_{p1}.X_{p1} \le V_{W1} \tag{11}$$

$$V_{n2}.X_{n2} \le V_{W_2} \tag{12}$$

$$V_k.X_k \le V_{W_3} \tag{13}$$

Keterangan:

 $V_{p1} = Kebutuhan air tanaman padi$

V_k= Kebutuhan air tanaman kacang tanah

 $V_{p2} = Kebutuhan air tanaman padi$

 V_{w1} = Volume andalan sungai pada musim tanam I

 V_{w2} = Volume andalan sungai pada musim tanam II

 $V_{\mathrm{w3}} = Volume$ andalan sungai pada musim tanam III

Dimana Vp dan Vk adalah kebutuhan air tanaman per satuan luas untuk satu musim pertumbuhan. Pada tanaman padi, volume airnya adalah:

MT I :
$$V_{p1} = 6818,869 \text{ m}^3/\text{Ha}$$

MT II : $V_k = 7057,335 \text{ m}^3/\text{Ha}$

MT II :
$$V_{p2} = 599,36 \text{ m}^3/\text{Ha}$$

Sedangkan V_{w1} , V_{w2} , dan V_{w3} adalah volume andalan Bendungan Kobun Nopi Sungai Batang Luai sebesar MT I = 3.404.340 m³ (= V_{w1}), MT II = 3.175.409 m³(= V_{w2}), dan MT III = 2.802.778 m³(= V_{w3}). Maka persamaan kendala untuk batasan volume andalan Bendungan Kobun Nopi pada persamaan (43) menjadi persamaan (44)

MT I :
$$6818,869 X_{p1} \le 3.404.340$$
 (14)

MT II :
$$7057,335 X_{p2} \le 3.175.409$$
 (15)

MT III :
$$599,36 X_k \le 2.802.778$$
 (16)

c. Kendala kedua

Luas areal tanam kedua jenis tanaman tersebut menentukan luas baku sawah yang dapat dimanfaatkan, seperti ditunjukkan pada persamaan (43).

$$X_p + X_k \le A_{bS} \tag{17}$$

Dalam hal ini luas maksimum sawah yang diperbolehkan adalah 200 Ha yang merupakan standar luas sawah atau Abs. Akibatnya, pembatasan dapat dinyatakan dengan cara berikut, mirip dengan persamaan (44):

$$X_{p1} \le 200$$
 (18)

$$X_{p2} \le 200$$
 (19)

$$X_k \le 20 \tag{20}$$

3. Rumusan program linier

Kemudian dari persamaan-persamaan diatas dan ditambah satu lagi batasan besaran X_p dan X_k adalah peubah-peubah tidak negatif (non-negativity variable), dengan kata lain peubah-peubah tersebut mempunyai nilai lebih besar atau sama dengan nol, maka dapat disusun satuperangkat rumusan programa linier sebagai berikut:

$$\begin{aligned} & \text{Maksimalkan } Z = 8.456.950 X_{p1} \ + \ 8.456.950 X_{p2} \ + \\ & 1.020.840 X_{k} \end{aligned}$$

$$6818,869 X_{n1} \le 3.404.340$$

$$7057,\!335\;X_{p2} \leq 3.175.409$$

$$599,36 \ X_k \le 2.802.778$$

$$X_{p1} \le 200$$

$$X_{p2} \le 200$$

$$X_k \le 20$$

Setelah itu, aplikasi tambahan QM untuk Windows 5 digunakan untuk menyelesaikan program linier; persamaan ini dimasukkan ke dalamnya sebagai masukan. Berikut adalah hasil terbaik yang dapat dicapai dengan perhitungan program linier:

1. Pola tanam : Padi-Padi-Palawija

Luas Lahan : Musim Tanam I, Padi = 200 HaMusim Tanam II, Padi = 200 HaMusim Tanam III, Palawija = 20 Ha

Keuntungan Maksimum: Rp. 3.403.197.000,00

2. Pola tanam: Padi-Padi

Luas Lahan: Musim Tanam I, Padi = 200 Ha

Musim Tanam II, Padi = 200 Ha

Keuntungan Maksimum: Rp 3.382.780.000,00

5. KESIMPULAN DAN SARAN

5.1. Kesimpulan

Hasil penelitian menunjukkan bahwa Daerah Irigasi Lubuk Ambacang I paling cocok untuk pola tanam padipadi-palawija dengan potensi luas irigasi 200 ha. Kesimpulan ini diambil dari hasil optimasi yang diperoleh menggunakan pemodelan linear programming dengan program bantu POM-QM for Windows 5. Dua ratus hektar (ha) padi ditanam pada musim tanam pertama (November– Februari), dua ratus hektar (Maret-Juni) pada musim tanam kedua, dan dua puluh hektar (Juli-Oktober) kacang tanah ditanam sebagai tanaman tambahan. Pola tanam tersebut memanfaatkan lahan secara optimal hingga tiga kali musim tanam dan mengkombinasikan komoditi tanaman tiap musim tanam dalam setahun, sehingga membantu mendapatkan keuntungan maksimum untuk para petani. Keuntungan maksimum dari optimasi yang dilakukan pada pola tanam padi-padi-palawija didapatkan nilai keuntungan bersih Rp. 3.403.197.000,00.

5.2 Saran

- Penulis sangat berharap adanya kajian-kajian selanjutnya, serta alternatif untuk pola tanam dengan mengeluarkan banyak komoditi tanaman.
- Penulis berharap jika hasil optimasi ini ingin diaplikasikan di Daerah Irigasi Lubuk Ambacang I sebaiknya instansi yang terkait melakukan pendekatan serta sosialisasi yang tepat terkait

perubahan pola tanam di Daerah Irigasi Lubuk Ambacang I kepada para petani untuk mendapatkan persetujuan.

DAFTAR PUSTAKA

- Difallah, W., Benahmed, K., Draoui, B., & Bounaama, F, 2017. Linear Optimization Model for Efficient Use of Irrigation Water, *International Journal of Agronomy*, University of Bechar, Algeria.
- Direktorat Jenderal Sumber Daya Air. 2013. Standar Perencanaan Irigasi Kriteria Perencanaan Bagian Jaringan Irigasi KP – 01.
- Kabupaten Kuantan Singingi. 2021. Rencana
 Pembangunan Jangka Menengah Daerah
 Kabupaten Kuantan Singingi Tahun 2016-2021,
 Pemerintah Kabupaten Kuantan Singingi,
 Kuantan Singingi.
- M. Sunjani. 2021. Optimasi Ketersediaan Dan Kebutuhan Air Irigasi Di Daerah Irigasi Nglirip Kabupaten Tuban, *DEARSIP: Journal of Architecture and Civil*, 1(2), 26–42, Surabaya.
- Mukhlas Abror, Manyuk Fauzi, M. E. S. J. 2014. Optimasi Pola Tanam Daerah Irigasi Kaiti Samo Kabupaten Rokan Hulu Menggunakan Program Linier, Jurnal Teknik Sipil Universitas Riau, Pekanbaru.
- Ruspianda, R. 2022. Analisis tata ruang desa bukit pedusunan kecamatan kuantan mudik Kabupaten Kuantan Singingi Provinsi Riau. *Jurnal Perencanaan, Sains, Teknologi dan Komputer.* 5(1), 57–60. Universitas Islam Kuantan Singingi.